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On the basis of the solution of the equations of motion for the case
of steady-state laminar flow of a viscous fluid between two circular
or rectangular porous planes in the presence of a lateral filtration
flow, we derived the theoretical relationships making it possible to
determine the degree of filtration nonuniformity.

Let us examine the steady-state plane-parallel
laminar flow of an incompressible viscous fluid be-
tween two parallel planes separated through a distance
2hincentimeters. One or both planes are permeable.
The pressure outside the slot is constant, while the
pressure inside the slot diminishes in the flow di-
rection x. Filtration takes place within the slot or
outside of the slot, under the influence of the pressure
difference. Let us denote the excess pressure by p,
so that p > 0 corresponds to filtration from the slot,
while p < 0 corresponds to filtration within the slot.
The system of the equations of motion and continuity
for this case has the form

op 0%
—_— = —, a
ax " op (@)
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_a_u_ al = (c)
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In the case of impermeable walls we have the familiar
solution

dp 3p
— e ) 2
dx 7 243 @

If the permeability of the walls is not great, the
change in velocity along the flow ~ caused by the
filtration - will be slow, the terms with second-

order derivatives with respect to x will he small, and
the equations of motion (1) will he retained, with the
boundary conditions, however, heing different.

We will assume that the local rate of filtration is
proportional to the pressure with a constant per-
meability factor m. We will position the coordinate
origin at the entry to the filtration segment on the
slot axis. The boundary conditions for the velocity
will then be

x>0, y=-h, u=0; (a)
x>0, y=+h, v=0; (b) (3)
x>0, Yy = —~h, v=—mp. (c)

Having integrated (1a) for conditions (3a), we obtain

P A 4)
2u  dx

Having substituted (4) into continuity equation (lc)
after integration for condition (3c) we ohtain the lat-
eral velocity
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Condition (3b) for the determination of p yields the
equation

2 .
dp  dem o (6)
dx? 2h3
whose solution is
p = Cy sh (ax) 4- Cych (ax), (7)

where a = (3um/2h%)°3,
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Pressure distribution in a liquid calculated from Eq. (36):
1 and 1') Flow from center; 2 and 2') flow toward center;
3 and 3') flow between rectangular planes (Eq. (18)).
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If both planes are permeable, the entire solution
remains in effect, but a = (3um/h%)0-5,

The solution remains valid for p > 0 and for p < 0.

The formulation of the corresponding boundary
conditions for p makes it possible to solve all of the
problems associated with flow of this kind.

Let the initial excess pressure in the sliot be given,
as well as the flow rate in the supply circuit:

x=0 p=P1,

—h<y<h G, _ 4 _, 3 (8)
q e ql; or dx =q 2h3 .

Condition (8) assumes that when x < 0 the flow
takes place in s flat slot with impermeable walls,
while when x = 0 the velocity profile is formed in
accordance with (4).

Having determined the constants in (7) from con-
dition (8}, we obtain

p:plch(ax)—% sh (ax). (9)

If when x =] the pressure p vanishes, [/ is a small
length of the segment in which filtration from the slot
is possible. Let us find this length. It follows from
{9) that

th(al) = 2P (10)
aq,
or
 HS
2a 3u g, — 2ap,h®

and we can therefore regard as physically possible
only those values of p; and gy which satisfy the in-
equality

P1 < g; (3p/2k3m)0 5, (12)
From (9) and (10) we also obtain

sha(l——x).

13
shal (13)

The total quantity of fluid drawn along path xthrough
the porous plane is

Ak

g = [ vdx=—m 5‘ pdx. (14)
0

o

The remaining portion of the fluid q; — qf = q¢4.
represents the transit flow. Hsving substituted the
value from (13) into (14) and after having performed
the calculations, we find that

cha{l—x)

tr —
= chal

(15)

Tt follows from (15) that the total filtration of the
entire incoming fluid cannot be achieved in a2 segment
of finite length. When x = [ the transit flow equals
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0
Gy = had (16)
When x > and p < 0, the direction of filtration
also changes

If we require total filtration on the segment x = [,
the value of p is determined from (7) at the closed end
of this segment for the boundary conditions:

X = 0’ p = pla
dp
x =1, ¢g=0, or —x=0. a7)
Then, for the pressure p we obtain
p = pyIch ax —th (al,) shax} (18)
and
~ 1
py=-2 = . (19)

Let us now examine the case of the radial flow of
a fluid between permeable disks. The equations of
motion and continuity are

op 0%,
ER @
_B_p____ , izo' (b)
0z de¢
1 d(ry,) dv,
— r =0_ C 20
; ar + 32 (c) (20)

The boundary conditions for the velocities are given by

z2=+Ah, v, =0, (a)
z=+h, v, =0, (o)
z=—Ah, v, = —mp, ) (21)
then
1 dp
U, =— — R
= a @
( dp 1 dp
Z)z I m—— —
dr? r dr
P h*z h )
X —_
6p 2n 3n
To find the pressure from condition (21c) we obtain
d* 1 dp .
— = — =0, 2
drt + rdr *p (22)

where @* = 3um/2h%,
The solution of Eq. (22) has the form

p = Ciy(ar) + C:K, (ar). 23)

Let us examine certain special cases. We will
assume everywhere in the following that ry > ry.
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1. Let the pressure p; and the flow rate q; along
the radius ry for flow from the center to the periphery
be given. In analogy with (8) we have

r=r, p=p,
—g= _9 _ .3 _ @
2nr =4 or dr 7 2h° *qlvr;z—' 24)

From these conditions, having determined the
constants in (23), we obtain

p = py(ary {[K (ary) — ;"p

1

Ko (ar )] I (ar) +

+[11 (ary) + =t
mp

1

I, (arl)] K, (ar) } . @5)

If with r = r, the pressure p vanishes, r, is the
greatest radius to which filtration from the slot is
possible, This radius is determined from the con-
dition that the expression in (25) contained within the
braces is equal to zero when r = 1r,. Hence we obtain

aq,
Ko (ar,) 3 '—";;1‘ K, (ar)) — K, (ary)

Io(ary) T agq
m

1

(26)

Iy (ary) + I (an)

We now calculate the total volume of the fluid which
is filtered in the segment from ry to r,:

Q =3’ 2nrmpdr. (27)

ri

To calculate Q¢, instead of integrating (25), it is
more convenient to determine the arbitrary constants
in (23) from the conditions

r=r p=p11
r=r, p=0, (28)
which yield
p=p Ko (ar.) In(a’) _10 (ar*)KO (ar) (29)

Iy (ary) Ko (ary) — 1o (ar,) Ko (ary)’
and after the calculations we obtain

QG ary[T; (ary) Ko (ar,) + To(ar,) K (ary)] © (30)

The relationship between the incoming and filtered
" fluid volumes, or the magnitude of the transit flow
QUr= ~ Qf, is a function of the auantities in the de-
nominator in the right-hand member of (30). We will
demonstrate that for any ar it is greater than unity
when r, > 1y, i.e., that

ary [I1(ary) Ko (ary) + Lo (ary) Ky (ary)} > 1

(re >11)- (31)
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Inequality (31) is equivalent to the following:

I, (ary) Ky ar,) + 1y (ar,) Ky (ary)
1, (ary) K, (ary) + 1y (ary) K,y (ary)

(ry < r-ry). (32)

Since Ij(ar{)# 0 and Ky(ary) = 0, it is possible by
means of term-~-by-term division to present (32) in the
y — [:Ko (ar*)

form
Iy (ar,)
Ku(ar) Ty (any) ]/
K, (an)
/[ Ky (ary) *

Iy (ary) ] o1
I (ary)
When r, = ry, Y = 1. Therefore, to prove inequal-
ity (33) it is sufficient that we establish that when
r, > ry the left-hand part of (33) increases with in-
creasing r,, or in otker words, it is sufficient that w

(ra > 1) (33)

establish that is positive when 1, > ry.

Ii(ary)
+ Iy (ary) }/

)d
d(ary)
We find the derivative

oy [_ K (ar,)

d(ar,) K; (an)
K, (ary) Iy (ary) ] . 34
/[ Ky (ary) * 1y (ary) %)

Since for all r, > ry, Kj(ar,) < K (ar,), and I;(ar,) >
> Ij(ary), the derivative is always positive, Hence it
follows that we always have the condition Q¢ < Qy,
i.e., total filtration is impossible on a radius of
finite magnitude. Analogously, we can demonstrate
that this statement is also true for flow toward the
center.

2. If the slot is covered at radius r,, i.e., if the
disks are of limited dimension, and if the entire
supplied volume of fluid is filtered, the boundary
conditions for (22) are written in the form

d a®
r=rn, —d—fzth_m_'
d
r=r, 2L o, (35)

and the pressure is expressed as

L‘_q_l_ Kl(arﬁ)lo(ar)+11(ar2)Kﬂ(ar) . (36)
m I (ary) Ky (ar)) — 1, (ary) K (ary)

p=

Since the rate of filtration is proportional to the
pressure, from (36) we derive the ratio of the local
filtration flow rate at the radii ry and r,, which is

%L = ar, [Ky (ara) Io (ar)) + Ly (ar) Ko (ary)]. (37)

2

Expression (37) makes it possible to determine the
degree of nonuniformity in filtration at the boundaries
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of a porous ring bounded by radii ry and ry. The figure
shows a number of curves for various values of ary
and ar, for identical initial flow rates Q.

As we can see from the shape of the curves, the
nature of the pressure distribution differs substan-
tially for cases of flow from the center and to the
center. In the latter case the distribution is more
uniform. With increasing distance trom the center,
the distribution of local filtration flows tends toward
solution (18), As shown in the figure, the difference
between solutions (36) and (18) does not exceed 5%
when ar, = 10 and ary = 8.

NOTATION

p is the pressure, dyne/cmz; u and v are the ve-
locity components in the direction of coordinate axes,
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em/sec; q is the flow rate per unit length of the feed
contour, em?/sec; p is the fluid viscosity, g/em sec;
2h is the width of the slot gap, cm; m is the perme-
ability factor, em? sec/g; r is the radius, em; Iy and

K, are Bessel functions of imaginary argument with
zero subscript; I and Ky are Bessel functions of imag-
inary argument with subscript 1; Qf is the total volume
of filtrated liquid, cm?®/sec; Qtr is thetransient volume
of liquid through slot, cm?®/sec.
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